Concepts and Formulas to Remember :

Binomial Distribution Formula			
Binomial Distribution	$P(x) = {}^{n}C_{x} \cdot p^{x} (1-p)^{n-x}$		
Or,	$P(r) = [n!/r!(n-r)!] p^{r} (1-p)^{n-r}$		

Where,

- n = Total number of events
- r (or) x = Total number of successful events.
- p = Probability of success on a single trial.
- ${}^{n}C_{r} = [n!/r!(n-r)]!$
- 1 p = Probability of failure.

➔ This concept can be best cleared by some examples, some are given below using the above formulas :

Example 1:

A coin is tossed12 times. What is the probability of getting exactly 7 heads?

Solution:

Given that a coin is tossed 12 times. (i.e) n= 12

Thus, a probability pf gettig head in single toss = $\frac{1}{2}$. (i.e) p = $\frac{1}{2}$.

We know that the binomial probability distribution is $P(r) = {}^{n}C^{r} \cdot p^{r} (1-p)^{n-r}$.

Now, we have to find the probability of getting exactly 7 heads.(i.e) r = 7.

Substituting the values in the binomial distribution formula, we get

 $\mathsf{P}(7) = {}^{12}\mathsf{C}_7 \cdot (1/2)^7 (1/2)^{12-7}$

 $P(7) = 792 \cdot (\frac{1}{2})^{7} (\frac{1}{2})^{5}$ $P(7) = 792 \cdot (\frac{1}{2})^{12}$ $P(7) = 792 \cdot (\frac{1}{4096})$ P(7) = 0.193

Therefore, the probability of getting exactly 7 heads is 0.193.

Example 2:

A coin that is fair in nature is tossed n number of times. The probability of the occurrence of a head six times is the same as the probability that a head comes 8 times, then find the value of n.

Solution:

The probability that head occurs 6 times = ${}^{n}C_{6} (\frac{1}{2})^{6} (\frac{1}{2})^{n-6}$

Similarly, the probability that head occurs 8 times = ${}^{n}C_{8} (\frac{1}{2})^{8} (\frac{1}{2})^{n-8}$

Given that, the probability of the occurrence of a head six times is the same as the probability that a head comes 8 times,

$$(i.e) {}^{n}C_{6} (\frac{1}{2})^{6} (\frac{1}{2})^{n-6} = {}^{n}C_{8} (\frac{1}{2})^{8} (\frac{1}{2})^{n-8}$$

⇒ ${}^{n}C_{6} (\frac{1}{2})^{n} = {}^{n}C_{8} (\frac{1}{2})^{n}$
⇒ ${}^{n}C_{6} = {}^{n}C_{8}$
⇒ $6 = n-8$
⇒ $n = 14$.

Therefore, the value of n is 14.

Example 3:

The probability that a person can achieve a target is 3/4. The count of tries is 5. What is the probability that he will attain the target at least thrice?

Solution:

Given that, $p = \frac{3}{4}$, $q = \frac{1}{4}$, n = 5.

Using binomial distribution formula, we get $P(X) = {}^{n}C_{x} \cdot p^{x} (1-p)^{n-x}$

Thus, the required probability is: P(X = 3) + P(X=4) + P(X=5)

Probability Distributions: The system in which the values of a random variable are given along with their corresponding probabilities is called probability distribution.

Let X be a random variable which can take n values $x_1, x_2, ..., x_n$.

Let p_1, p_2, \ldots, p_n be the respective probabilities.

Then, a probability distribution table is given as follows:

X	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	 x _n
Р	<i>p</i> ₁	<i>p</i> ₂	P3	 P _n

such that $P_1 + p_2 + P_3 + ... + p_n = 1$

Note: If x_i is one of the possible values of a random variable X, then statement X = x_i is true only at some point(s) of the sample space. Hence ,the probability that X takes value x, is always non-zero, i.e. $P(X = x_i) \neq 0$

Mean and Variance of a Probability Distribution: Mean of a probability distribution is

$$\sum_{i=1}^{n} x_i \cdot p_i. \text{ It is also called expectation of } X, \text{ i.e. } E(X) = \mu = \sum_{i=1}^{n} x_i p_i.$$

Variance is given by V(X) or σ_x^2 and defined as $\sigma^2 = \sum_{i=1}^n x_i^2 \cdot p(x_i) - \left(\sum_{i=1}^n x_i \cdot p(x_i)\right)$

or

$$E(X^{2}) - [E(X)]^{2}$$

or

Equivalently
$$V(X) = E(X-\mu)^2$$
 or $\sum_{i=1}^n (x_i - \mu)^2 p(x_i)$

Standard deviation is given by, $\sigma_x = \sqrt{v(x)} = \sqrt{\sum_{i=1}^n (x_i - \mu)^2 p(x_i)}$

Bernoulli Trial: Trials of a random experiment are called Bernoulli trials if they satisfy the following conditions:

- (i) There should be a finite number of trials.
- (ii) The trials should be independent.
- (iii) Each trial has exactly two outcomes, success or failure.

(iv) The probability of success remains the same in each trial.

Binomial Distribution: The probability distribution of numbers of successes in an experiment consisting of n Bernoulli trials obtained by the binomial expansion (p + q)n, is called binomial distribution.

Let X be a random variable which can take n values $x_1, x_2, ..., x_n$. Then, by binomial distribution, we have $P(X = r) = {}^{n}C_{r} p^{r}q^{n-r}$ where,

n = Total number of trials in an experiment

p = Probability of success in one trial

q = Probability of failure in one trial

r = Number of success trial in an experiment

Also, p + q = 1

Binomial distribution of the number of successes X can be represented as

x	0	1	2	r	n
P (X)	ⁿ C ₀ p ⁰ q ⁿ	${}^{n}C_{1}p^{1}q^{n-1}$	${}^{n}C_{2}p^{2}q^{n-2}$	ⁿ .C _r p ^r q ^{n-r}	"C _n p"

Mean and Variance of Binomial Distribution

(i) Mean(μ) = $\Sigma x_i p_i$ = np

(ii) Variance(σ^2) = $\Sigma x_i^2 p_i - \mu^2 = npq$

(iii) Standard deviation (σ) = $\sqrt{Variance} = \sqrt{npq}$

Note: Mean > Variance