Related Problem with Solution :

Q) If the mean and the variance of a binomial variate X are 2 and 1 respectively, then probability that X takes a value greater than or equal to one is

Soln :
For binomial distribution,

$$
\begin{align*}
& \text { Mean }=n p=2 \tag{1}\\
& \text { Variance }=n p q=1 \\
& \Rightarrow 2 q=1 \\
& \Rightarrow q=\frac{1}{2} \\
& \Rightarrow p=\frac{1}{2} \quad(\because p+q=1) \\
& \Rightarrow n=4
\end{align*}
$$

Now, $\mathrm{P}(\mathrm{X} \geq 1)=1-\mathrm{P}(\mathrm{X}=0)$
$=1-4 \mathrm{C}_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{4}$
$=1-\frac{1}{16}$
$=\frac{15}{16}$

