Q5. Calculate the depression in the freezing point of water when 10 g of CH₃CH₂CHClCOOH is added to 250 g of water. $K_a = 1.4 \times 10^{-3}$, $K_f = 1.86$ K kg mol^{-1} .

Answer :

Molar mass of $CH_3CH_2CHCICOOH = 15+14+13+35.5+12+16+16+1$ =122.5 g mol⁻¹ $CH_3CH_2CHCICOOH = \frac{10 \text{ g}}{122.5 \text{ g mol}^{-1}}$:No. of moles present in 10 g of $= 0.0816 \, \text{mol}$

It is given that 10 g of CH₃CH₂CHCICOOH is added to 250 g of water.

$$=\frac{0.0186}{250} \times 1000$$

.: Molality of the solution,

 $= 0.3264 \text{ mol kg}^{-1}$

Let abe the degree of dissociation of $\ensuremath{{\ensuremath{\mathsf{CH}}}_3\ensuremath{{\ensuremath{\mathsf{CH}}}_2\ensuremath{{\ensuremath{\mathsf{CH}}}}_2\ensu$

 $\label{eq:ch2} CH_3 CH_2 CHClCOOH \\ \text{undergoes dissociation according to the following equation:}$

$\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}\mathrm{CICOOH} \iff \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}\mathrm{CICOO^{-}} + \mathrm{H}^{+}$				
Initial conc.	C mol L ⁻¹	0	0	
At equilibrium	$C(1-\alpha)$	Cα	Cα	

Now
$$K_{\alpha} = \frac{C\alpha^2}{1}$$

 $\Rightarrow K_{\alpha} = C\alpha^2$
 $> \alpha = \sqrt{\frac{K_{\alpha}}{C}}$
 $= \sqrt{\frac{1.4 \times 10^{-3}}{0.3264}}$ (:: K_{\alpha} = 1.4 x 10⁻³)

= 0.0655

Now, Calculation of Vant Hoff factor:

CH ₃ CH ₂ CHClCOOH \leftrightarrow CH ₃ CH ₂ CHClCOO ⁻ +H ⁺				
Initial cone	1	0	0	
At equilibrium	1-α	α	α	
Total moles of equilibrium = $1 - \alpha + \alpha + \alpha$				
= 1 + α				
$\therefore i = rac{1+lpha}{1}$				
=1+a				
=1+0.0655				
= 1.0655				
Hence, the depression in the freezing point of water is given as:				
$ riangle T_f = i.K_fm$				

= 1.0655 x 1.86 K kg mol⁻¹ x 0.3264 mol kg ⁻¹

= 0.65 K