Q4. Determine the osmotic pressure of a solution prepared by dissolving 25 mg of K<sub>2</sub>SO<sub>4</sub> in 2 liter of water at 25° C, assuming that it is completely dissociated.

## Answer:

When  $K_2SO_4$  is dissolved in water,  $K^+$  and  $SO_4^{2-}$  ions are produced.

$$K_2SO_4 \longrightarrow 2K^+ + SO_4^{2-}$$

Total number of ions produced = 3

Given,

$$w = 25 \text{ mg} = 0.025 \text{ g}$$

$$V = 2L$$

$$T = 25^{\circ}C = (25 + 273) K = 298 K$$

Also, we know that:

$$M = (2 \times 39) + (1 \times 32) + (4 \times 16) = 174 \text{ g mol}^{-1}$$

Appling the following relation,

$$\pi = i \frac{n}{v} RT$$

$$= i \frac{w}{M} \frac{1}{v} RT$$

$$= 3 \times \frac{0.025}{174} \times \frac{1}{2} \times 0.0821 \times 298$$

$$= 5.27 \times 10^{-3} \text{ atm}$$